Bohr's theory of the atom was proposed in the early 20th century and was based on the idea that electrons move in fixed orbits around the nucleus. According to this theory, the position and momentum of an electron in an atom can be determined with absolute precision at any given moment, which seems to contradict Heisenberg's uncertainty principle.
Heisenberg's uncertainty principle states that it is impossible to determine the exact position and momentum of a particle simultaneously. This...
It is theoretically possible for a substance to have a negative value of cubical expansivity, which means that the substance would contract rather than expand when the temperature increases. However, it is very rare for a substance to have a negative value of cubical expansivity over a significant range of temperatures.
One example of a substance that has a negative value of cubical expansivity over a limited range of temperatures is water. Water has a positive value of cubical expansivity at...
Here, f(x)=x2 -6 logx-3=0
f(2)=4-6 log2-3=-0.806
f(3)=9-6 log3-3=3.1373
f(2).f(3)=-0.806*3.1373=-2.529422 which is negative.
Hence, the root lies between 2 and 3
c0 =(2+3)/2=2.5
f(2.5)=6.25-6 log 2.5-3=0.8623
Now
| n | a(-ve) | b(+ve) | cn | f(cn) |
| 0 | 2 | 3 | 2.5 | 0.8623 |
| 1 | 2 | 2.5 | 2.25 | -0.050595 |
| 2 | 2.25 | 2.5 | 2.375 | 0.38664 |
| 3 | 2.25 | 2.375 | 2.3125 | 0.1631658 |
| 4 | 2.25 | 2.3125 | 2.28125 | 0.05506 |
| 5 | 2.25 | 2.28125 | 2.265625 | 0.001925 |
From the table,
f(2.265625)=0.001928<10-2
Therefore, the...
