Log2aa=x then, a=(2a)x ......(1)
Log3a2a=y then,2a=(3a)y ......(2)
Log4a 3a=z then, 3a=(4a)z ......(3)
So,
a=(2a)x [from (1)]
Or, a=(3a)xy [from(2)]
Or, a=(4a)xyz [from(3)]
Multiplying both sides by 4a,
4a.a=4a.(4a)xyz
Or,(2a)² =(4a)xyz + 1
Or,(3a)2y =(4a)xyz+1
Or,(4a)2yz =(4a)xyz+1
Or, 2yz = xyz+1 .proved.
The order of magnitude of a physical quantity is its magnitude in powers of ten when the physical quantity is expressed in powers of ten with one digit to the left of the decimal.
Orders of magnitude are generally used to make very approximate comparisons and reflect very large differences.
Materials show varying behaviors based on their Poisson's ratio. High Poisson's ratio materials (near 0.5) contract significantly sideways when stretched and expand when compressed, seen in substances like rubber. Low Poisson's ratio materials (near 0) undergo minimal width change during axial deformation, typical of metals and common engineering materials.

